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ABSTRACT
The paper proves the Strong Law of Large Numbers for integral
functionals of random fields with unboundedly increasing covarian-
ces. The case of functional data and increasing domain asymptotics
is studied. Conditions to guarantee that the Strong Law of Large
Numbers holds true are provided. The considered scenarios include
wide classes of non stationary random fields. The discussion about
application to weak and long-range dependent random fields and
numerical examples are given.
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1. Introduction

The recent evolution of technology and measuring tools provided a tremendous amount of
functional data and substantively motivated a development of new statistical models and
methods. Numerous classical results that originally were obtained for discretely sampled
data require extensions to new types of observations collected as functional curves, raster
images or spatial data. These high-dimensional data structures often do not have such nice
properties as stationarity or uniform boundedness of their moment characteristics.
The aim of this paper is to derive the Strong Law of Large Numbers (SLLN) for

functional data in R
d, d � 1, under not restrictive assumptions on moments and depend-

encies between observations. We consider realizations of random fields XðsÞ, s2R
d,d�1,

(not necessary homogeneous and isotropic) with weak restrictions on their covariance

functions Bðs1,s2Þ,s1,s22R
d: Namely, the covariance functions Bðs1,s2Þ can unboundedly

increase, as jjs1jj, jjs2jj!1, when the distance jjs1� s2jj between the locations s1, s2 is pre-
served bounded. By this condition, the variances VarðXðsÞÞ are not necessary uniformly

bounded on R
d: Moreover, as we will see later, this condition allows to consider random

fields with long-range dependence and their non linear transformations.
We are interested in the asymptotic behavior of

nðlÞ ¼ 1
ld

ð
DðlÞ

XðsÞds, when l ! 1,
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where DðlÞ is a homothetic transformation with the coefficient l of a set D 2 R
d which

plays a role of an observation window in statistical applications. For the case of identi-
cally distributed X(s) the statistic nðlÞ is a classical estimator of the mean. This paper
studies the case of correlated observations and conditions on the behavior of the covari-

ance function Bðs1, s2Þ that guarantee the convergence nðlÞ!a:s: 0, l ! 1:

In Lyons (1988) SLLN was obtained for sequences of weakly dependent random vari-
ables fXðnÞ, n � 1g such that VarðXðnÞÞ ¼ Oð1Þ: Other results on the SLLN can be
found in M�oricz (1977), M�oricz (1985), Serfling (1970).
The multidimensional versions of the results were obtained in Gaposhkin (1978) and

Parker and Rosalsky (2019). Parker and Rosalsky (2019) proved the SLLN for 2-
dimensional arrays fXðn,mÞ, n � 1,m � 1g of independent random elements with val-
ues in Banach spaces. In Gaposhkin (1978), the multidimensional SLLN for stationary
random processes and homogeneous random fields was established. Necessary and suffi-
cient conditions for the SLLN were found.
Later Hu, Rosalsky, and Volodin (2005) proved the SLLN for sequences of random

variables fXðnÞ, n � 1g with less restrictive conditions on moments and dependencies
between observations comparing with the results in Lyons (1988). More precisely, they
studied the case of

VarðXðnÞÞ < HðnÞ, n � 1,X1
n¼1

HðnuÞ
n2

< 1,

where u is a golden ratio, and used the dependency assumption

sup
n

jcovðXðnÞ,XðnþmÞÞj � qðmÞ,
X1
m¼1

qðmÞ
mu�1

< 1:

From these conditions, one may see that there are sequences of random variables pos-
sessing long-range dependence that satisfy SLLN.
The results presented in Hu, Rosalsky, and Volodin (2005) were extended by the

same authors to the case of more general normalization of partial sums in Hu,
Rosalsky, and Volodin (2008). These results found numerous applications. We provide
a few examples that illustrate areas that employed such results:

� in Ashikhmin, Li, and Marzetta (2018), the results from Hu, Rosalsky, and
Volodin (2005) were applied to an investigation of wireless massive multiple-
input multiple-output system entails a large number of base station antennas
serving a much smaller number of users, with large gains in spectral efficiency
and energy efficiency;

� in Li, Mukhopadhyay, and Dunson (2017), to data lying in a high dimensional
ambient space that commonly thought to have a much lower intrin-
sic dimension;

� in Baron (2014), to a study of a Bayesian multichannel change-point detection
problem in a general setting;
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� in Shu and Nan (2019), to the estimation of large covariance and precision
matrices from high-dimensional sub-Gaussian or heavier-tailed observations with
slowly decaying temporal dependence;

� in Kumar et al. (2019), to show that stochastic programming provides a framework
to design hierarchical model predictive control schemes for periodic systems;

� in Pumi, Schaedler, and Souza (2020), to a class of dynamic models for time ser-
ies taking values on the unit interval;

� in Cousido-Rocha, de U~na �Alvarez, and Hart (2019), to a recurring theme in
modern statistics that is dealing with high-dimensional data whose main feature
is a large number of variables but a small sample size;

� in Vega and Rey (2013), to a construction of adaptive algorithms that leads to
the so called Stochastic Gradient algorithms;

� in Hojjatinia, Lagoa, and Dabbene (2020), to introduce novel methodologies for
the identification of coefficients of switching autoregressive moving average with
exogenous input systems and switched autoregressive exogenous linear models.

The main novelties of the obtained in this paper results are in investigating
� case of random fields with multidimensional observation windows;
� case of functional data and their integral functionals;
� weaker conditions on variances and dependencies then in the above publications;
� weakly and strongly dependent random fields.

Specifically, the conditions on the variances and covariance functions are relaxed. The
variances are bounded by the functions H(s) which can increase faster than in Hu,
Rosalsky, and Volodin (2005), as jjsjj ! 1: The covariance functions can unboundedly
increase, when the locations are getting far away from the origin, but a distance between
them is bounded. We show that wide classes of long-range dependent random fields
and their non linear transformations satisfy the SLLN. Moreover, observation windows
D can be taken from a wide class of sets.
This paper is organized as follows. Section 2 provides required definitions and nota-

tions. The main results of this article are proved in Section 3. Numerical studies con-
firming the theoretical findings are given in Section 5. Conclusions and some open
problems are presented in Section 6.

2. Definitions and notations

The main definitions and notations about random fields are given in this section.
In what follows we use the symbol C to denote constants which are not important for

our discussion. Moreover, the same symbol Cmay be used for different constants appealing

in the same proof. Let ¼d denote the equality of finite-dimensional distributions.
For � > � 1

2 , we denote by

J�ðzÞ ¼
X1
m¼0

ð�1Þmðz=2Þ2mþ�

m!Cðmþ � þ 1Þ, z � 0,

the Bessel’s function of the first kind of order �, where z � 0:
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Definition 1. A random field XðsÞ, s 2 R
n, is called strictly homogeneous, if finite-

dimensional distributions of Y(s) are invariant with respect to the group of motion
transformations

PðXðs1Þ < a1, :::,XðskÞ < akÞ ¼ PðXðs1 þ hÞ < a1, :::,Xðsk þ hÞ < akÞ
for all h 2 R

n, where s1, ::, sk 2 R
n and a1, ::, ak 2 R:

Definition 2. A random field XðsÞ, s 2 R
n, is called isotropic, if its finite-dimensional

distributions are invariant with respect to rotation transformations

PðXðs1Þ < a1, :::,XðskÞ < akÞ ¼ PðXðAs1Þ < a1, :::,XðAskÞ < akÞ
for all rotation transformations, i.e., orthogonal matrices A with the absolute value of

determinant of A equals to 1, s1, ::, sk 2 R
n and a1, ::, ak 2 R

d:

Let X(s) be a constant mean random field defined on R
d, d � 1: Without loss of gen-

erality, let EXðsÞ ¼ 0:
The function BðrÞ, r � 0, is a correlation function of an isotropic random field if and

only if there exists a measure G on fRþ,Bþg such that B(r) allows the following inte-
gral representation

BðrÞ ¼ EðXðs1ÞXðs2ÞÞ ¼ 2
n�2
2 C

n
2

� �ð
Rþ
Jn�2

2
ðurÞðurÞ2�n

2 GðduÞ, r ¼ jjs1 � s2jj,

where jj � jj denotes the Euclidean distance in R
d:

Definition 3. A measurable function L : ð0,1Þ ! ð0,1Þ is called slowly varying at the
infinity if for all k > 0

lim
t!1

LðktÞ
LðtÞ ¼ 1:

Definition 4. The function

HmðuÞ ¼ ð�1Þmeu2=2 dm

dum
e�

u2
2

is a Hermite polynomial of order m. The first few Hermite polynomials are

H0ðuÞ ¼ 1,H1ðuÞ ¼ u,H2ðuÞ ¼ u2 � 1:

It is known that the Hermite polynomials form a complete orthogonal system in the
space L2ðR,/ðuÞduÞ, i.e., ð

R

Hm1ðuÞHm2ðuÞ/ðuÞdu ¼ dm2
m1m1!,

where dm2
m1

is a Kronecker delta function.

Definition 5. A random field XðsÞ, s 2 R
d, is called long-range dependent if its covariance

function Bðs1, s2Þ ¼ EðXðs1ÞXðs2ÞÞ is not absolutely integrable for each s1 2 R
d, i.e.,
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ð
R

d

jBðs1, s1 þ s2Þjds2 ¼ þ1:

3. Main results

In this section we introduce dependencies assumptions and prove the SLLN for ran-
dom fields.

Assumption 1. The absolute value of the covariance function of X(s) is bounded as

jBðs1, s2Þj ¼ jcovðXðs1Þ,Xðs2ÞÞj � Cð1þ jjs1jjc þ jjs2jjcÞqðjjs1 � s2jjÞ, c � 0,

where qðuÞ, u 2 Rþ, is a such positive bounded function that for some b > 0 it
holds qðuÞ � 1=ub, u � 1:
Then the variance of X(s) is bounded by the function

HðsÞ :¼ Cð1þ 2jjsjjcÞqð0Þ,
which can unboundedly increase, when jjsjj ! 1:

Remark 1. It follows from Assumption 1 that for any fixed s1 2 R
d the covariance func-

tion is bounded by Cðs1Þjjs2jjc�b if jjs2jj ! þ1 and

ð
R

d
Bðs1, s2Þds2 � C 1þ Cðs1Þ

ð
jjs2jj�1

jjs2jjc�bds2

 !

¼ C 1þ Cðs1Þ
ð1
1
rdþc�b�1dr

� �
:

Therefore, in the case b� c > d the random field X(s) is weakly dependent and in the
case b� c � d the random field X(s) can have a non integrable covariance function and
be long-range dependent.
We consider the random variables

nðlÞ ¼ 1
ld

ð
DðlÞ

XðsÞds, l > 0, (3.1)

where DðlÞ is a homothetic transformation with the parameter l of a simply connected

d-dimensional set D � R
d, which is a compact set containing the origin and the

Lebesgue measure jDj > 0: The integral in (3.1) is well-defined because of the measurabil-
ity of X(s), see Theorem 1.1.1. in Ivanov and Leonenko (2012).

We will use the notation diamðAÞ for the diameter of the set A � R
d,

i.e., diamðAÞ ¼ sup
x, y2A

jjx� yjj:

To establish conditions for nðlÞ!a:s: 0, as l ! 1, we use the classical method of sub-
sequences. By this method, the existance of the increasing subsequence fln, n � 1g such

that nðlnÞ!a:s: 0, as n ! 1, and the convergence of the deviations supl2½ln, lnþ1Þ jnðlÞ �
nðlnÞj!a:s: 0, as n ! 1, are enough for the convergence nðlÞ!a:s: 0, as l ! 1:
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Lemma 1. Let Assumption 1 be satisfied and there exist an increasing sequence of positive
numbers fln, n � 1g such one of the following conditions holds

(i) for b < d

X1
n¼1

1

lb�c
n

< þ1, (3.2)

(ii) for b � d

X1
n¼1

1

ld�c
n

< þ1: (3.3)

Then, the sequence of random variables nðlnÞ!a:s: 0, as n ! 1:

Proof. Note that as EðXðsÞÞ ¼ 0, then the variances of nðlÞ can be estimated as

VarðnðlÞÞ ¼ 1
l2d

ð
DðlÞ

ð
DðlÞ

covðXðs1Þ,Xðs2ÞÞds1ds2

� C
l2d

ð
DðlÞ

ð
DðlÞ

ð1þ jjs1jjc þ jjs2jjcÞqðjjs1 � s2jjÞds1ds2

� C
l2d

ð
DðlÞ

ð
DðlÞ

ð1þ jjs1jjcÞqðjjs1 � s2jjÞds1ds2 þ C
l2d

ð
DðlÞ

ð
DðlÞ

ð1þ jjs2jjcÞqðjjs1 � s2jjÞds1ds2

¼ 2C
l2d

ð
DðlÞ

ð
DðlÞ

ð1þ jjs1jjcÞqðjjs1 � s2jjÞds1ds2:

After the change of the variables ~s1 ¼ s1,~s2 ¼ s1 � s2 one gets

VarðnðlÞÞ ¼ 2C
l2d

ð
DðlÞ

ð
DðlÞ�DðlÞ

ð1þ jj~s1jjcÞqðjj~s2jjÞd~s1 ~ds2,

where DðlÞ � DðlÞ :¼ fs�~s : s,~s 2 DðlÞg denotes the Minkowski difference of sets.
The set DðlÞ is bounded, so there exists a centered ball Bðl � diamðDÞÞ ¼ fs 2 R

n :

jjsjj � l � diamðDÞg such that DðlÞ � DðlÞ � Bðl � diamðDÞÞ: Then, by converting the
integrals to the spherical coordinates, it follows from Assumption 1 that

VarðnðlÞÞ � C
l2d

ð
DðlÞ

ð1þ jj~s1 jjcÞd~s1
ð

Bðl�diamðDÞÞ

qðjj~s2 jjÞ ~ds2

� C
l2d

ðl�diamDð1Þ

0

~rd�1
1 ð1þ ~rc1Þd~r1

ðl�diamðDÞ

0

~rd�1
2 qð~r2Þd~r2

� C
l2d

ðld þ ldþcÞ
 
C þ

ðl�diamðDÞ

1

~rd�1
2 qð~r2Þd~r2

!
� C

l2d
ðld þ ldþcÞðC þ ld�bÞ:

Now the Borel-Cantelli lemma is used to find conditions for nðlnÞ!a:s: 0:
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By Chebyshev’s inequality one getsX1
n¼1

PðjnðlnÞj > eÞ � 1
e2
X1
n¼1

VarðnðlnÞÞ � C
X1
n¼0

ðldn þ ldþc
n ÞðC þ ld�b

n Þ
l2dn

:

Let b < d, then

ðldn þ ldþc
n ÞðC þ ld�b

n Þ
l2dn

� C

lb�c
n

, n ! 1:

Thus, for b < d the sequence nðlnÞ!a:s: 0, when n ! 1, if
P1

n¼1 l
c�b
n < þ1:

Let b � d: Then

ðldn þ ldþc
n ÞðC þ ld�b

n Þ
l2dn

� C

ld�c
n

:

Thus, for b � d the sequence nðlnÞ!a:s: 0, when n ! 1, ifX1
n¼1

1

ld�c
n

< þ1:

w

Lemma 2. Let Assumption 1 be satisfied. If there exists an increasing sequence of positive
numbers fln, n � 1g such that

X1
n¼1

ðldnþ1 � ldnÞ2lcn
l2dn

< þ1 (3.4)

and

X1
n¼1

�
1

ldnþ1

� 1
ldn

�2

l2dþc
nþ1 < þ1, (3.5)

then the sequence of random variables gðlnÞ :¼ supl2½ln, lnþ1Þ jnðlÞ � nðlnÞj
!a:s: 0, n ! 1:

Proof. It is enough to show that the random variables gðlnÞ are bounded by a sequence
of random variables converging a.s. to 0, when n ! 1:

The random variables gðlnÞ allow the following estimation from above

sup
l2½ln, lnþ1Þ

jnðlÞ � nðlnÞj ¼ sup
l2½ln, lnþ1Þ

���� 1ld
ð
DðlÞ

XðsÞds� 1
ldn

ð
DðlnÞ

XðsÞds
����

� sup
l2½ln, lnþ1Þ

���� 1ldn
ð

DðlÞnDðlnÞ

XðsÞds
����þ sup

l2½ln,lnþ1Þ

����
�

1
ld

� 1
ldn

�ð
DðlÞ

XðsÞds
����:
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The above supremums can be estimated as

sup
l2½ln, lnþ1Þ

���� 1ldn
ð

DðlÞnDðlnÞ

XðsÞds
���� � 1

ldn

ð
Dðlnþ1ÞnDðlnÞ

jXðsÞjds :¼ Ið1Þln
,

sup
l2½ln, lnþ1Þ

����
�

1
ld

� 1
ldn

� ð
DðlÞ

XðsÞds
���� �

�
1
ldn

� 1

ldnþ1

� ð
Dðlnþ1Þ

jXðsÞjds :¼ Ið2Þln
:

The next step is to find conditions that guarantee that Ið1Þln
!a:s: 0 and Ið2Þln

!a:s: 0,
when n ! 1:

Using Markov’s inequality, the following series can be estimated as

X1
n¼1

PðIð1Þln
> eÞ ¼

X1
n¼1

P

�
1
ldn

ð
Dðlnþ1ÞnDðlnÞ

jXðsÞjds > e

�

� 1
e2
X1
n¼1

1
l2dn

E

� ð
Dðlnþ1ÞnDðlnÞ

jXðsÞjds
�2

¼ 1
e2
X1
n¼1

1
l2dn

ðð
ðDðlnþ1ÞnDðlnÞÞ2

E Xðs1ÞjjXðs2Þjds1ds2,j

where
Ð Ð
A2

denotes the double integral
Ð
A

Ð
A:

By using H€older’s inequality for p ¼ q ¼ 2 one gets

X1
n¼1

PðIð1Þln
> eÞ � 1

e2
X1
n¼1

1
l2dn

ðð
ðDðlnþ1ÞnDðlnÞÞ2

ðEX2ðs1ÞEX2ðs2ÞÞ1=2ds1ds2

¼ 1
e2
X1
n¼1

1
l2dn

� ð
Dðlnþ1ÞnDðlnÞ

ðEX2ðsÞÞ1=2ds
�2

� jDð1Þj2
e2

X1
n¼1

ðldnþ1 � ldnÞ2 sups2Dðlnþ1ÞnDðlnÞHðsÞ
l2dn

� C
e2
X1
n¼1

ðldnþ1 � ldnÞ2ð1þ Clcnþ1Þ
l2dn

:

Thus, by the Borel-Cantelli Lemma, the sequence Ið1Þln
!a:s: 0, when n ! 1, if

X1
n¼1

ðldnþ1 � ldnÞ2lcnþ1

l2dn
< þ1:

Now we derive conditions for the convergence Ið2Þln
!a:s: 0, when n ! 1:

Using Markov’s and H€older’s inequalities one obtains

X1
n¼1

PðIð2Þln
> eÞ ¼

X1
n¼1

P

�
1
ldn

� 1

ldnþ1

� �ð
Dðlnþ1Þ

jXðsÞjds > e

�
� 1

e2
X1
n¼1

�
1

ldnþ1

� 1
ldn

�2

� E

�ð
Dðlnþ1Þ

jXðsÞjds
�2

¼ 1
e2
X1
n¼1

�
1

ldnþ1

� 1
ldn

�2 ðð
ðDðlnþ1ÞÞ2

EjXðs1ÞjjXðs2Þjds1ds2

� 1
e2
X1
n¼1

�
1

ldnþ1

� 1
ldn

�2� ð
Dðlnþ1Þ

ðEX2ðsÞÞ1=2ds
�2

� C
e2
X1
n¼1

�
1

ldnþ1

� 1
ldn

�2

ð1þ Clcnþ1Þl2dnþ1:
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Hence, by the Borel-Cantelli Lemma, the sequence Ið2Þln
!a:s: 0, when n ! 1, if

X1
n¼1

�
1

ldnþ1

� 1
ldn

�2

lcþ2d
nþ1 < þ1:

From the positiveness of gðlnÞ ¼ supl2½ln, lnþ1Þ jnðlÞ � nðlnÞj and the boundedness

gðlnÞ � Ið1Þln
þ Ið2Þln

such that Ið1Þln
!a:s: 0 and Ið2Þln

!a:s: 0 it follows the convergences

sup
l2½ln, lnþ1Þ

jnðlÞ � nðlnÞj!a:s: 0, n ! 1:

w

Theorem 1. If for b > 0 and c > 0 there exists a sequence fln, n � 1g satisfying the

assumptions in Lemmas 1 and 2, then nðlÞ!a:s: 0, as l ! 1:

Proof. As fln,n�1g�Rþ is an increasing sequence and ln!1,n!1, then for each l2
Rþ there exists ln such that l2½ln,lnþ1Þ: It follows from nðlÞ¼nðlnÞþnðlÞ�nðlnÞ that

nðlnÞ� sup
l2½ln,lnþ1Þ

����nðlÞ�nðlnÞ
�����nðlÞ�nðlnÞþ sup

l2½ln,lnþ1Þ

����nðlÞ�nðlnÞ
����:

Thus, by Lemma 1 and by Lemma 2 we get nðlÞ!a:s: 0, as l ! 1: w

Theorem 2. Let Assumption 1 be satisfied. The SLLN holds true, if one of the following
conditions is satisfied

(i) b 2 ð0, dÞ and 2c < b,
(ii) b � d and 2c < d:

Proof. Let ln ¼ na: Consider the first case and check the conditions of Lemmas 1 and 2.
The condition (3.2) becomes X1

n¼1

1
naðb�cÞ < 1,

and is satisfied if a > 1
b�c :

The conditions (3.4) and (3.5) hold if ac < 1: Indeed, from the asymptotic behavior
of the terms in (3.4) and (3.5)

ðldnþ1 � ldnÞ2lcn
l2dn

¼ ððnþ 1Þad � nadÞ2nac
n2ad

	 ððnþ 1Þad�1Þ2nac
n2ad

¼ 1
n2�ac

and �
1

ldnþ1

� 1
ldn

�2

lcþ2d
nþ1 ¼ 1

ðnþ 1Þad �
1
nad

 !2

ðnþ 1Þacþ2ad

	 ðnþ 1Þacþ2ad

ðnþ 1Þ2adþ2 ¼ 1

ðnþ 1Þ2�ac :
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Thus, the conditions of Lemmas 1 and 2 are satisfied if 0 < b < d, a > 1
b�c and ac < 1:

Then, it follows from 1
b�c < a < 1

c that the required a exists if 2c < b:

Using the same approach, we derive that for b � d the conditions of Lemmas 1 and
2 are satisfied if b � d and 1

d�c < a < 1
c : Thus, the required a exists if 2c < d: w

Remark 2. The upper bound in Assumption 1 can be replaced by another one that
guarantees for jjs1jj, jjs2jj ! þ1 the covariance covðXðs1Þ,Xðs2ÞÞ sufficiently fast decays
to zero for s1 and s2 which are getting further away from each other, and it increases
not too fast for s1 and s2 that are close. For instance, one can use the conditions

jBðs1, s2Þj � Cð1þ jjs1jj þ jjs2jjÞcqðjjs1 � s2jjÞ
or

jBðs1, s2Þj � Cð1þ jjs1jjcÞð1þ jjs2jjcÞqðjjs1 � s2jjÞ:

Remark 3. Homogeneous isotropic random fields satisfy Assumption 1 with c ¼ 0, if
their covariance functions have hyberbolic bounded decays of order b:

4. Non stationary example

As SLLN holds for homogeneous isotropic random fields with hyperbolically bounded
covariance functions, it would be interesting to provide a simple example of non homo-
geneous and non isotropic random field for which the result holds true.

Example. Let XðsÞ ¼ gðsÞHkðZðsÞÞ, s 2 R
d, d � 1, where gð�Þ is a deterministic function,

Hkð�Þ, k 2 N, is the Hermite polynomial of degree k and Zð�Þ is a homogeneous iso-
tropic Gaussian random field with EZ(s) ¼ 0 and the covariance function BðsÞ, such
that Bð0Þ ¼ 1 and

BZðsÞ ¼ EðZðsÞZð0ÞÞ ¼ LðjjsjjÞ
jjsjjb0 , b0 > 0,

where L(s) is a slowly varying function.
By properties of the Hermite polynomials of Gaussian random variables, see, for

example, (2.1.8) in Ivanov and Leonenko (2012)

EXðsÞ ¼ gðsÞEHkðZðsÞÞ ¼ 0,
Bðs1, s2Þ ¼ gðs1Þgðs2ÞEðHkðZðs1ÞÞHkðZðs2ÞÞÞ ¼ gðs1Þgðs2Þk!Bkðjjs1 � s2jjÞ:

By properties of slowly varying functions, see Proposition 1:3:6ðvÞ in Bingham, Goldie,
and Teugels (1989), for any b > kb0 there is a constant C such that

Bk
ZðjjsjjÞ �

C

jjsjjb , jjsjj � 1:

Thus, if

jgðs1Þgðs2Þj � Cð1þ jjs1jjc þ jjs2jjcÞ (4.1)

and kb0 < b, then Assumption 1 holds true and by Theorem 2
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1
ld

ð
DðlÞ

gðsÞHkðZðsÞÞds!a:s: 0, l ! þ1:

First, note that it follows from

jgðsÞj � Cð1þ jjsjjc0Þ, c0 > 0, (4.2)

that

jgðs1Þgðs2Þj � Cð1þ jjs1jj2c0 þ jjs2jj2c0Þ:
Thus, if (4.2) holds, then (4.1) is true with c ¼ 2c0:
Some example of functions gð�Þ satisfying (4.1) are

(i) gðsÞ 
 C > 0: This case corresponds to the classical equally-weighted average
functionals of homogeneous isotropic process or field;

(ii) gðsÞ ¼Qd
i¼1 s

li
i , where s ¼ ðs1, ::, sdÞ, li > 0, i ¼ 1, ::, d: Note that

jgðsÞj ¼
Yd
i¼1

jsijli � 1þ jjsjj2
Pd

i¼1
li

and (4.1) is satisfied with c0 ¼ 2
Pd

i¼1 li;
(iii) gðsÞ ¼Qd

i¼1 si ln ðqi þ jsijÞ, where s ¼ ðs1, :::, sdÞ and qi > 1, i ¼ 1, ::, d:

By using the logarithm inequality ln ðxÞ � x� 1, one obtains that

jgðsÞj � C
Yd
i¼1

jsij þ
Yd
i¼1

jsij2

and the upper bound follows from the estimate in (ii) and (4.2).
The weight functions in (ii) and (iii) are often used in non linear regression and M

estimators applications.
It follows from results in Alodat and Olenko (2020); Ivanov and Leonenko (2012) that

for the field X(s) in the examples above one can obtain not only SLLN, but also limit theo-
rems about the convergence of distributions. Namely, the following result holds true.

Theorem 3. Alodat and Olenko (2020) Let a function gðsÞ, s 2 R
d, satisfy the condition

l2d�b0kg2ðl � 1dÞLkðlÞ ! 1, when l ! 1, and there exists a function g�ð�Þ such that

lim
l!1

���� gðlsÞgðl1dÞ � g�ðsÞ
����! 0

uniformly for s 2 Dð1þ eÞ for some e > 0,ðð
ðDð1þeÞÞ2

jg�ðs1Þg�ðs2Þj
jjs1 � s2jjb0j

ds1ds2 < þ1,
ð
R

dk

Yk
j¼1

jjkjjjb0�djKDðkj, g�Þj2
Yk
j¼1

dkj < þ1,

and
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lim
l!1

ð
R

dk

����
ð
D

eiðk1þ::þkk, sÞ
�

gðljjsjjÞ
gðl � 1djjsjjÞ

Yk
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðl=jjkjjjÞ

LðlÞ

s
� g�ðsÞ

�
ds

����
2Yk
j¼1

jjkb0�djj
Yk
j¼1

dkj ¼ 0:

Then, for b0 2
�
0,min d

k ,
dþ1
2

� ��
the random variables

1

ld�b0k=2gðl � 1dÞLk=2ðlÞck=21 ðd, b0Þ

ð
DðlÞ

gðsÞHkðZðsÞÞds

converge weakly to the random variable

n� :¼
ð0
R

dk
KDðk1 þ ::þ kk, g

�Þ
Qk

j¼1 WðdkjÞQk
j¼1 jjkjjjðd�b0Þ=2 ,

where Wð�Þ is the complex Gaussian white noise random measure on R
d,
Ð 0
R

d denotes
the multiple Wiener-Itô integral, where the diagonal hyperplanes ki ¼ 6kj, i, j ¼
1, ::, k, i 6¼ j, are excluded from the domain of integration, 1d ¼ ð1, ::, 1Þ 2 R

d,
KDðk, g�Þ ¼

Ð
De

iðk, sÞg�ðsÞds, c1ðd, b0Þ ¼ Cððd � bÞ=2Þ=2b0pd=2Cðb0=2Þ:
Remark 4. For the three functions gð�Þ introduced in the Example it is easy to see that

(i) g�ðsÞ 
 C,
(ii) g�ðsÞ ¼Qd

i¼1 s
li
i ,

(iii) g�ðsÞ ¼Qd
i¼1 si,

Remark 5. For b0 2
�
0,min d

k ,
dþ1
2

� ��
the random field Z(s) is long-range dependent

and the limit n� has a non Gaussian distribution if k � 2:

Remark 6. If the random field X(s) is weak-dependent, one can derive the Central
Limit Theorem for the integral functionals of the form (3.1), see, for example,
Theorems 1.7.1–1.7.3 in Ivanov and Leonenko (2012).

5. Numerical example

In this section, we provide a numerical example confirming the obtained theoretical
results. By simulations of random fields, we show that for the function gð�Þ satisfying
(ii) in the Example in Section 4 the integral functional in (3.1) converges to 0, as l ! 1: A
reproducible version of the code in this paper is available in the folder” Research materials”
from the website https://sites.google.com/site/olenkoandriy/.
We consider d ¼ 2, the random variables in (3.1) and the random field X(s) given by

the formula

XðsÞ ¼
Y2
k¼1

jskjcH2ðZðsÞÞ,

12 I. DONHAUZER ET AL.
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where H2ðxÞ ¼ x2 � 1 is the Hermite polynomial of order 2, ZðsÞ, s ¼ ðs1, s2Þ 2 R
2, is a

homogeneous isotropic Gaussian random field with the Cauchy type covariance function

BZðrÞ ¼ 1

ð1þ r2Þb , r � 0:

The observation window Dð1Þ ¼ wð1Þ :¼ fðs1, s2Þ : js1j � 1, js2j � 1g is a square.
For the simulations we used the values of b ¼ 0:4 and c ¼ 0:1: Theorems 2 and 3

hold true for these values.
As the simulations of random fields can be done only on a discrete grid, we used the

dense grid of points fðih, jhÞ : i, j ¼ �N, � N þ 1, :::,N � 1,Ng,N 2 N, where h is a
small fixed step. The integrals in (3.1) were approximated by the Riemann’s sums

ð
DðlÞ

XðsÞds �
XN
i¼�N

XN
j¼�N

Xðih, jhÞh2 ¼
XN
i¼�N

XN
j¼�N

jihj0:1jjhj0:1H2ðZðih, jhÞÞh2:

Then 300 realizations of the random field X(s) in the square region wð300Þ ¼ fðs1, s2Þ :
jsij � 300, i ¼ 1, 2g were generated. A realization of the random fields X(s) in the square
wð300Þ on the 2D grid with the step h¼ 0.25 and the corresponding values of nðlÞ for
l ¼ 10, 50, 100, :::, 300 are given in Figure 1. The Q-Q plot of the simulated values of
nð300Þ is shown in Figure 2(a). As l¼ 300 is sufficiently large the distribution is close
to the asymptotic one. As expected, it is not Gaussian.
Using the obtained realizations of XðsÞ, the random variables nðlÞ were computed

for l ¼ 10, 50, 100, ::, 300: The box plots of the simulated values of nðlÞ are given in
Figure 2(b). Table 1 shows the corresponding Root Mean Square Error (RMSE) of nðlÞ
for different values of l: Figure 2(b) and Table 1 confirm the convergence of nðlÞ to
zero when l increases.

Figure 1. Realizations of the random field and its integral functional. (a) Realization of X(s). (b)
Realization of n(l).
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6. Conclusions and the future studies

The SLLN for random fields with unboundedly increasing variances and covariance
functions was obtained. The conditions of the obtained results allow to consider the
case of non linear transformations of long-range dependent random fields. The results
were derived for a very general class of simply connected observation windows D:
In the future studies, it would be interesting to obtain:

� Laws of Large Numbers with the complete convergence, see Hu, Rosalsky, and
Volodin (2012), for multidimensional functional data;

� Necessary and sufficient conditions for the SLLN for non homogeneous and non
isotropic random fields Gaposhkin (1978);

� Rate of convergence in the SLLN, see Anh et al. (2019); Hu and Sun (2020).
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Figure 2. Empirical distributions of n(l). (a) QQplot of n(300). (b) Boxplots of n(l).

Table 1. RMSE of nðlÞ:
l 10 50 100 150 200 250 300

RMSE 0.217 0.106 0.079 0.068 0.057 0.052 0.048
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